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Abstract

Benchmark problems for the Frequency Assignment Problem are uncommon in the lit-

erature. This scarcity is due to the highly sensitive nature of the information. Mobile

communications vendors are understandably reluctant to give out information about the

geographical location of transmitters in their networks. In the �rst part of this report a

novel method for producing benchmark problem examples for the frequency assignment

problem is introduced. This method uses probabilistic modelling to produce real looking

transmitter locations on a �xed at region. The output produced by the problem generator

can then be used for any of a wide variety of solution techniques.

Lower bounding techniques can be used to assess the quality of assignments and to com-

pare the relative merits of algorithms. In the second part of the report the main techniques

used to obtain lower bounds for minimum span frequency assignment problems are presen-

ted. These include techniques based on Mathematical Programming. For cellular problems

a dramatic simpli�cation of these Mathematical Programming techniques is described. The

method is shown to produce strong lower bounds. A potential application of the lower

bounding technique to the assignment process itself is described.
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1 Introduction

In an earlier report (Dunkin and Allen 1998) two aspects of the Frequency Assignment Problem

(FAP) were studied. Methods of determining lower bounds for the span in minimum span

frequency assignment problems were described and shown to give good results for a variety of

examples. Such lower bounds allow the evaluation of assignments with respect to the problem

representation, and also help in evaluating the relative merits of di�erent algorithms. The

report also contained a critical appraisal of the expressiveness of the usual binary constraint

representation of the Frequency Assignment Problem. Alternatives to this binary constraint

representation were proposed.

The current report continues this contribution to the evaluation of the methods and al-

gorithms of frequency assignment. A Benchmark Generator is described which can be used to

create sample data sets. These data sets contain information that is not usually available from

network operators. The use of this Benchmark Generator will allow models and algorithms to

be compared more easily, and allow comparisons between the work of di�erent groups. The

report also contains a more detailed account of lower bounding techniques than was contained

in the previous report. In particular, in the case of cellular frequency assignment problems, a

dramatic simpli�cation of Mathematical Programming approaches is described. A possible use

of this lower bounding technique in the actual assignment process is also outlined.
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Part I

A Probabilistic Benchmark Generator for

the Frequency Assignment Problem

2 Introduction

Benchmark examples for the Frequency Assignment Problem [9, 19] are rare due to the sensitive

nature of the data. Network providers are understandably reluctant to give information relating

to transmitter positions and powers. This can make research into e�cient solution techniques for

the frequency assignment problem di�cult due to the limited availability of realistic problem

instances. The benchmark problems that do exist have often been solved to the optimum

solution and therefore are of reduced interest to researchers.

Useful example data for the frequency assignment problem would consist of a collection

of geographical transmitter locations along with data pertaining to the transmitter such as

power and direction. Obviously the most important of these is the geographical locations

of the transmitters. The Benchmark Generator described in this document uses probability

distributions over planar regions to construct realistic examples of the frequency assignment

problem.

3 The Benchmark Generator

Throughout the frequency assignment literature there is a lack of benchmark problem examples

of the frequency assignment problem. In this section we describe a probabilistic problem gen-

erator that is able to generate authentic looking problem instances of the frequency assignment

problem.

3.1 A Suitable Representation

Research into �nding solutions to the frequency assignment problem is wide ranging and utilises

many di�erent representation and solution techniques. As a result of this diversity the problem

generator is not associated with any particular solution technique, to this end the output of

the generator must be as generic as possible. In this way the generated benchmark problems

may then be applied to any number of di�erent representations and solution techniques, such

as binary constraints or other higher order models. The most generic solution is for the output

of the generator to consist of transmitter location coordinates over a �xed at region of space.

3.2 Underlying Assumptions

We begin by assuming that the density of transmitter locations in a given region is directly

proportional to the density of population or demand. You would expect to see many more

transmitters per square mile in Central London than you would in the surrounding rural areas.

In order to model this density function over the �xed region R we construct Gaussians,

centred at the location of towns in our �ctional region. The height and width of the Gaussian
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can be tailored to represent towns of di�erent spread and population. As an example of this

representation, a single large town centred at position (25; 25) is shown in Figure 1.
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Figure 1: A density representation of a single large town

3.3 Building Up the Region

From this simple idea of representing a single town area, we can take a number of these Gaus-

sians and build up a small �ctional geographic region.

The Gaussian for each town can be constructed and then summed together to give a dens-

ity function for the entire region R. In this way edges of towns that overlap give combined

probability values, thus producing suitably more dense transmitter placings. A example of two

towns overlapping is shown in Figure 2.

3.4 Generating Transmitter Locations

From the resulting density function and the addition of a small amount of random background

noise we can generate the positions of transmitters placed to service the region R using the

following probabilistic algorithm.

� For a given region R of �xed size, and

� for all points in the region (x; y).

� Place a transmitter at (x; y) with probability P (x; y).

The probability P (x; y) is the value of the density function at the point in the region (x; y).
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Figure 2: A density representation of two close towns of di�erent sizes

3.5 An Example

In Figure 3 is shown the result of summing three Gaussians of various heights and widths at

positions (25; 10); (10; 40) and (40; 50).
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Figure 3: A density representation of three intersecting towns

This density/probability distribution can now be used to generate the transmitter locations

shown in Figure 4.
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Figure 4: A graph of transmitters placements

4 Generating receiver positions

Some solution techniques used for the Frequency Assignment Problem require a collection of

typical receiver points. These points can be used to check signal-to-noise ratios for any given

assignment. Test receivers are best placed where there is expected to be the highest levels of

interference in the region. The highest levels of interference are likely to be observed at points

in the region that are equidistant between transmitters.

After the transmitters have been placed by the problem generator, a set of typical receiver

points are generated for testing purposes. These points are displayed on the output as well as

output to a special receiver �le.

5 A receiver example

In Figure 5 the results of a two town plot are shown. The numbers represent the transmitter

points while the small circles represent the chosen test receiver placements. Lines of equal

distance are shown between the transmitters plotted on the region.
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Figure 5: A graph of transmitters placements with test receivers

6 User Instructions

6.1 Introduction to the interface

In this section the user interface to the problem generator will be described.

6.1.1 Invoking the Problem Generator

The generator has been implemented in Matlab and therefore requires Matlab to be running on

the user's machine. Having installed the benchmark generator's .m �les in the Matlab source

directory, the program can be initiated with

benchmark;

If the user has a parameter �le from a previous run of the generator then the program can be

initiated with.

benchmark('example1.prm');

This will invoke the generator with the parameters de�ned the �le example1.prm. The format

of the parameter �le is described in Section 7.1. When using the parameter �le option the user

will still be able to control the number of problems generated.
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6.1.2 Setting up the region

The user will then be asked to input the dimensions of the modelling region. During the

perturbation part of the modelling process this region will be increased by 100 times so a

suitable size would be,

Give dimensions of whole region

x-length of region : 100

y-length of region : 100

This will give a �nal region of approximately 10000 by 10000. Note that the placement of towns

on this region will be with respect to the 100 by 100 region. The perturbation is a necessary

part of the process, and introduces further randomness into the placement process.

6.1.3 Setting the background probability

Though most of the transmitters will be placed in the town-like areas of high probability there

is a need to place some transmitters in the surrounding area with low probability, therefore a

background probability value can be set to increase or decrease this likelihood. The background

probability is enforced over the entire region.

The user is asked to input a background probability level with the following prompt,

Background probability : 0.001

The value of 0:001 gives good results but this value can be experimented with.

6.1.4 Setting the random seed

The transmitters are placed on the region with respect to the probability value at any point

and the value generated by a random number generator. To ensure that successive passes of

the generator produce di�erent results this value should be changed each time the generator is

used. Obviously to ensure that a particular problem instance can be regenerated the random

seed should be recorded for future reference. The random seed is one of the parameters saved

in the parameter �le and is recalled when that parameter �le is used. This ensures that when

the generator is used with the parameter �le input, problem instances can be regenerated.

The seed for the random number generator is input at the following prompt,

Random seed : 1234

6.1.5 Placing the towns

For any given problem instance the user can model a system with any number of towns. The

number of towns required is input at the following prompt,

Number of towns : 1
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For each town on the region, the user must input the centre of each town in respect to the

original region size entered. In this example the original region size was 100 by 100. The user

must also input the town's spread. The spread of a town determines how far out from the centre

point the Gaussian will spread.

Number of towns : 1

x-center : 50

y-center : 50

x-length : 40

y-length : 40

height : 0.02

cutoff : 0.001

The height �eld sets the probability at the highest point in the Gaussian, the value of 0:02

seems to give good results and values any higher tend to produce far too dense a population of

transmitters.

The �nal �eld, cutoff, controls how quickly the Gaussian falls o� as it approaches the

x-length and y-length points.

Figure 6 shows a Gaussian town centred at 50 x 50 with the following parameters,

x-length : 30

y-length : 30

height : 0.02

cutoff : 0.001

Notice that at 20 and 80 the Gaussian has a value of 0:001 - i.e. the cut o� value speci�ed in

the de�nition.

By experimenting with these values, the user is able to create a very large number of di�erent

town types, from very wide, sparsely populated regions to very tight, densely populated regions.
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Figure 6: A Gaussian town with height:0.02 and cutoff:0.001
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6.1.6 Visualisation of the towns

After each town has been placed the generator will display a contoured image of the probability

distribution over the region. This image is useful for checking that the towns are placed correctly

and over-lapping where necessary. An example of this image for a single town placement is

shown in Figure 7.
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Figure 7: A probability density representation of a single large town

Assuming that everything is okay, the generator prompts the user to,

Press any key to place transmitters

6.1.7 Placing the transmitters

Any number of problems can be generated from a single probability distribution and the user

is next asked to input how many problem instances are to be generated. The program prompts

with,

Number of placement runs : 1

The generator outputs information for each problem instance to a �le on disk, the user must

give the root-name for these �les,

Filename root : example

The generator will now generate, for each problem instance, the following �les

� example#.prm - The parameter �le for problem number #

� example#.trn - The transmitter location �le for problem number #
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� example#.rec - The receiver location �le for problem number #

As the generator creates each problem instance it displays important information about each

instance. Remember that in addition to the transmitters placements the problem generator

evaluates positions of likely high interference and at these points places test receivers positions.

These receiver positions can be ignored but are useful in some solution methods.

For each placement the generator displays the number of transmitters placed and the number

of test receiver points selected.

Placement 1.

44 transmitters placed.

72 receivers selected.

6.2 Graphical Output of the Problem

In order for the user to evaluate each problem instance for its suitability the program �nally

outputs the problem instance to the screen.

For each problem instance the generator displays the following diagram,
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Figure 8: A placement of transmitters, resulting from a single large town

In Figure 8 the numbers are the positions of the transmitters, the small circles are the

selected receiver positions and the lines divide the region up into possible cell areas. The

division into cell areas assumes a propagation model that is not subject to noise and that every

mobile receiver will always tune to its geographically closest transmitter.
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7 The Benchmark Generator Output Files

The problem generator will, for each problem instance, create three output �les of the follow-

ing form. The �le name route for these �les is set by the user as described in the previous

instructions.

7.1 The Parameter File

The �rst �le created is the generator's parameter �le. This �le has a .prm extension. In the

parameter �le is recorded all the detail necessary to recreate one or more problem instances.

To make problem instance regeneration a simpler task, the �le name of the parameter �le

can be passed as an argument to the initial call to the benchmark program. For example

benchmark('example1.prm'); will invoke the generator and pass the arguments held in the

example1.prm parameter �le.

The �les are all created automatically. Here is the structure of the .prm �le.

% benchmark.m parameter file

% transmitter file : example1.trn

% receiver file : example1.rec

x_reg 100

y_reg 100

background 0.0010

seed 1234

num_towns 1

50

50

40

40

0.0200

0.0001

14



7.2 The Transmitter Coordinates File

The next �le created is the generator's transmitter coordinate �le. This �le has a .trn extension.

After the sequence of comments the �le contains the x and y coordinate of the transmitter

location followed by an identifying number for the transmitter.

The �les are all created automatically. Here is the structure of the .trn �le.

% transmitter coordinates

% xmin xmax ymin ymax : 0 10000 0 10000

% parameter file : example1.prm

% receiver file : example1.rec

% format: x y trans_num

198.97 4361.66 1

2201.48 5804.10 2

2582.21 3898.55 3

2596.84 6234.71 4

2959.73 2097.64 5

3092.75 2083.20 6

3143.85 9549.34 7

3327.53 6098.47 8

3437.25 884.33 9

3816.77 5370.71 10

3997.55 3958.49 11

3909.55 5652.62 12

4198.74 4020.81 13

4273.67 9803.20 14

4482.59 4650.80 15

4436.24 5096.64 16

4598.66 3175.62 17

5289.67 4397.24 18

5242.55 6026.44 19

5757.04 1157.09 20

5763.05 5459.71 21

5819.32 2868.72 22

5935.95 4530.47 23

5912.34 6499.78 24

6739.92 3994.20 25

6941.86 5854.08 26

7153.60 3407.90 27

7517.58 2989.04 28

7609.76 6546.25 29

7940.51 1632.59 30

8558.07 4916.24 31

9223.23 6557.49 32
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8 The Receiver Coordinates File

The �nal �le created is the generator's receiver coordinate �le. This �le has a .rec extension.

After the sequence of comments the �le contains the x and y coordinate of the receiver location

followed by an identifying number for the transmitter that the receiver is tuned to.

The �les are all created automatically. Here is the structure of the .rec �le.

% receiver coordinates

% xmin xmax ymin ymax : 0 10000 0 10000

% transmitter file : example1.trn

% parameter file : example1.prm

% format: x y rec_num serving_trans_num

1102.67 2648.38 1 1

1495.95 4672.32 2 2

2835.41 4939.95 3 3

2856.46 5599.54 4 4

2933.41 5305.20 5 8

2950.57 1393.42 6 9

3133.02 3073.99 7 3

3262.21 4582.04 8 11

3271.54 7825.82 9 7

3323.80 3127.65 10 3

3445.16 5649.22 11 8

3570.68 3008.53 12 6

3754.25 4645.02 13 15

3934.21 4518.94 14 15

3943.53 4820.09 15 10

4114.45 7870.68 16 7

4200.39 5400.68 17 16

4242.31 3524.22 18 17

4312.06 6780.86 19 12

4350.79 7810.33 20 14

4433.26 1819.47 21 17

4463.57 7839.26 22 19

4507.66 1781.76 23 17

4594.43 5773.96 24 16

4766.69 4143.86 25 18

4876.90 3824.48 26 17

4962.78 2042.94 27 20

5014.11 4931.39 28 18

5078.95 5353.80 29 16

5149.38 5096.44 30 18

5344.24 3560.13 31 22

5516.09 4933.05 32 23

5768.78 3707.23 33 22
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5770.93 5989.33 34 21

5958.77 3693.90 35 25

6264.97 5918.42 36 24

6411.63 3323.48 37 25

6531.42 5121.97 38 26

6689.15 2636.73 39 27

6694.71 8946.02 40 14

6721.57 1978.94 41 22

6734.21 2000.63 42 28

6756.16 6701.59 43 26

6783.53 4930.37 44 25

7444.42 4858.61 45 26

7745.61 4264.70 46 31

7882.95 5614.33 47 26

8139.99 3897.48 48 27

8420.84 5927.27 49 32

9852.50 2972.90 50 28
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Part II

Lower Bounds for Channel Assignment

9 Introduction

The study of lower bounds for channel assignment (Allen et al. to appear 1999, Gamst 1986,

Lanfear 1989, Raychaudhuri 1985, Smith and Hurley 1997) is important for at least three

reasons. Firstly, lower bounds can be used to show how good a particular assignment is, and

whether it is capable of improvement. Secondly, they can be used to assess the e�ectiveness

of particular algorithms. This is a much more powerful technique than simply comparing the

results of algorithms one with another. Indeed, it is unfortunate that many papers on channel

assignment algorithms have simply given results for a particular algorithm on sets of test data

which may not be accessible to the reader. This can make it impossible for the reader to

assess the e�ectiveness of the algorithm. Thirdly, it may be that identi�cation of the particular

structure in the problem that determines the best lower bound shows where the algorithm

should concentrate its e�ort in order to �nd the best assignment.

This part of the report will concentrate on lower bounds for minimum span channel assign-

ments. The study of lower bounds for the number of constraint violations in �xed spectrum

problems with no feasible solution is much less well developed.

Express the channel assignment problem in its usual graph theoretic formulation. The

transmitters are represented by the vertices V (G) of a constraint graph G (Hurley et al. 1997):

De�nition 1 A constraint graph G is a �nite, simple, undirected graph in which each edge

vivj (vi; vj 2 V (G)) has an non-negative integer label �ij.

De�nition 2 A channel assignment (or frequency assignment) in a constraint graph G is a

mapping f : V (G) ! F (where F is a set of consecutive integers 0; : : : ;K) such that the

constraints

jf(vi)� f(vj)j > �ij

are satis�ed for all vivj 2 E(G). Sometimes this is referred to as a zero-violation assignment.

If one or more of the inequalities are violated then f is an assignment with constraint violations.

The elements of the set F can be referred to as channels (or as frequencies).

De�nition 3 If K is a minimum over all zero-violation assignments then the assignment is a

minimal assignment. This minimal value of K is the minimum span of G, denoted sp(G).

Thus the span of an assignment is the di�erence between the largest channel used and the

smallest channel used and sp(G) is the minimum span over all possible assignments. The object

of this part of the report is to �nd a lower bound for sp(G), i.e. a value B such that sp(G) � B.

B + 1 represents a minimum number of consecutive channels that could possibly be used to

assign G without constraint violations. Sometimes an assignment of span B can be found;

sometimes no assignment of span B is possible. A lower bound B is only useful if B is close to

sp(G).
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10 Clique Bounds

The most common lower bound is based on cliques. The idea is borrowed from the theory of

colourings of graphs. A clique of a graph G is a maximal complete subgraph of G. Thus every

pair of vertices of the subgraph are adjacent, and the subgraph is not contained in any larger

such subgraph (some authors omit this maximality requirement). For the purposes of channel

assignment, a clique can be regarded as a set of transmitters for which there is a constraint

between the frequencies assigned to any pair. Thus cliques tend to correspond to clusters of

geographically close transmitters. As the edge labels of the constraint graph normally take

several di�erent values, it is possible to de�ne several di�erent levels of clique.

De�nition 4 A level-p clique of G is a complete subgraph in which every edge has label at least

p, and which is not contained in any larger such complete subgraph.

Thus a level-1 clique, for example, corresponds to a set of transmitters for which every pair of

transmitters cannot be assigned the same channel, or a �rst adjacent channel.

Theorem 1 If Cp is a level-p clique of a constraint graph G then

sp(G) � (p+ 1)(jV (Cp)j � 1):

where V (Cp) denotes the vertex set of the clique Cp.

Proof The minimum span of G cannot be less than the minimum span of the subgraph

Cp of G. For any chosen minimal span assignment f of Cp renumber the vertices of Cp as

v0; v1; : : : ; vjV (Cp)j�1 in ascending order of the channel assigned to them (and arbitrary order

for vertices assigned the same channel). The span of the assignment is the di�erence between

the largest and the smallest channel used, i.e.

sp(Cp) = f(vjV (Cp)j�1)� f(v0)

=

jV (Cp)j�2X

j=0

f(vj+1)� f(vj)

(as all but two of the terms cancel in pairs)

�
jV (Cp)j�2X

j=0

p+ 1

= (p+ 1)(jV (Cp)j � 1):

2

Example 1 The constraint graph shown in Fig. 9 has minimum span 11. A minimum span

assignment is shown. Theorem 1 applied to the level-3 clique f2 3 5g gives sp(G) � 8.

Similarly, applying the theorem to the level-2 clique f2 3 4 5g gives sp(G) � 9. It will be seen

later that the clique bound is capable of improvement for this example.
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Figure 9: An Example Constraint Graph and Assignment

11 Travelling Salesman Bounds

A better bound can often be obtained using Hamiltonian paths. A Hamiltonian path in a graph

G is a path through all of the vertices of the graph, visiting each vertex once and once only.

Hamiltonian paths were �rst used by Raychaudhuri (1985) to derive bounds for the channel

assignment problem. An account is also given by Smith and Hurley (1997). In order to calculate

the bound it is �rst necessary to construct from G a weighted complete graph G0 on the vertices

of G. The weight cij of each edge vivj of G
0 is given by:

cij = 0 if vivj is not an edge of G,

cij = �ij + 1 if edge vivj has label �ij in G (�ij = 0; 1; : : :).

Let H(G0) be the total weight of a minimum weight Hamiltonian path in G0.

Theorem 2 If G is a constraint graph then

sp(G) � H(G0)

Proof For any chosen minimal span assignment f ofG number the vertices ofG as v0; v1; : : : ; vjV (G)j�1

in ascending order of the channel assigned to them (and arbitrary order for vertices assigned

the same channel). Then v0; v1; : : : ; vjV (G)j�1 is a Hamiltonian path Hf in G0. The span of the

assignment is the di�erence between the largest and the smallest channel used, i.e.

sp(G) = f(vjV (G)j�1)� f(v0)

=

jV (G)j�2X

j=0

f(vj+1)� f(vj)

(as all but two of the terms cancel in pairs)

�
jV (G)j�2X

j=0

cvj+1vj

= the total weight of Hf

� H(G0):

2
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The problem of determining the minimum weight of a Hamiltonian path in a graph is usually

known as the open, symmetric travelling salesman problem (Volgenant and Jonker 1982). Thus

the bound of Theorem 2 can be referred to as the travelling salesman bound.

It is important to realise that Theorem 2 should be applied to a subgraph of the constraint

graph and not to the constraint graph itself. In most problems the application of the theorem

to the full constraint graph gives a lower bound which is too small to be useful. Thus the

theorem is applied with G taken to be the chosen subgraph of the full constraint graph. In

order to obtain a strong bound, a suitable choice of subgraph is a clique or a clique with some

vertices added. The question of how this subgraph should be obtained will be considered later.

A method due to Volgenant and Jonker (1982) and software described by Volgenant (1990)1

can be used to calculate the travelling salesman bound. The software generally gives satis-

factory results. Even when the algorithm does not converge in reasonable time, the di�erence

between the lower and upper bound is small, so a good lower bound for H(G0) is usually ob-

tained. However, the software is only applicable for subgraphs of up to 250 vertices, which does

sometimes restrict its application.

Another bound, which is easier to calculate, is the spanning tree bound. A spanning tree in

a graph is a connected subgraph of the graph which contains every vertex and no cycles. Let

S(G0) denote the total weight of a minimum weight spanning tree in G0. As a Hamiltonian

path is a spanning tree, it follows that H(G0) � S(G0). Thus the following result is immediate:

Theorem 3 If G is a constraint graph then

sp(G) � S(G0)

Again the theorem should be applied to a suitable subgraph and not normally to the full

constraint graph. The spanning tree bound is often not as strong as the travelling salesman

bound, but is much easier to calculate. When applied to a clique it may be stronger than the

clique bound. A simple greedy algorithm, known as Prim's Algorithm (Prim 1957), �nds S(G0)

immediately. An implementation is contained in FASoft (Hurley et al. 1997).

Returning to Example 1 it can be seen that applying both the spanning tree bound and the

travelling salesman bound to the clique f2 3 4 5g give lower bounds of 11, which equals sp(G).

12 An Example

The Philadelphia problems were �rst described by Anderson (1973) and have been studied

by many authors, see for example (Gamst 1986), (Sivarajan et al. 1989). Optimal solutions

to most of the standard variations have recently been found (Smith et al., 1998), (Hurley

et al. 1997). The problems are based on the area around Philadelphia, PA. The hexagonal

geometry of 21 cells is shown in Fig. 10. A requirements vector m is used to describe the

demand for frequencies in each cell. Thus mi denotes the number of channels required by cell

i and m = (8; 25; 8; 8; 8; 15; 18; 52; 77; 28; 13; 15; 31; 15; 36; 57; 28; 8; 10; 13; 8) in this example.

Transmitters are considered to be located at cell centres and the distance between transmitters

in adjacent cells is taken to be 1. Denote by dk the smallest distance between transmitters

1The software is available on the World Wide Web. See:

http://www.mathematik.uni-kl.de/~ wwwwi/WWWWI/ORSEP/contents.html

ftp://www.mathematik.uni-kl.de/pub/Math/ORSEP/VOLGENAN.ZIP
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Figure 10: The Cellular Geometry of the Philadelphia Problems

which can use frequencies with a separation of k channels. In this example d0 =
p
12, d1 =

p
3,

d2 = d3 = d4 = 1 and d5 = 0, so transmitters within the same cell (co-sited transmitters) must

be separated by at least 5 channels.

The subgraph that must be used to obtain the lower bound is too large to apply the software

described by Volgenant (1990). Thus an alternative method is necessary. The form of the

travelling salesman bound used here was �rst obtained by Janssen and Kilakos (1996) using

integer programming methods. They showed that if there are only two values of constraint

between transmitters in di�erent cells, then it is possible to classify the extreme points of a

certain linear programming polytope. One of these extreme points corresponds to the bound

described here.

The result is more easily described directly using Theorem 2. Let Gs denote the subgraph

of the constraint graph corresponding to the transmitters in cell 9 and the six surrounding cells

2,3,8,10,16,17. Consider the graph G0
s which is a complete graph with no edges of weight 0. It

has 275 vertices so sp(Gs) is at least 274. There are no edges of weight 1 incident with any

vertex from cell 9. Thus the channels before and after any channel assigned to one of the 77

vertices in cell 9 must be unoccupied. These unassigned channels are distinct if the co-site

value is 5. The minimum value of H(G0
s) occurs when the �rst and last channels are assigned

to vertices from cell 9. Then H(G0
s) � 274 + 75 � 2 + 2 � 1 = 426: Thus the minimal span

for the complete problem is not less than 426. In fact an assignment of span 426 can be found

using FASoft (Smith et al., 1998), (Hurley et al. 1997). A frequency plan of the assignment

can be found in (Smith et al., 1998)2. Notice that the same bound can be derived (and the

same assignment is valid) if the co-site value is 3 or 4 instead of 5.

13 Finding Cliques and Other Subgraphs

The following elementary result has already been used implicitly in the proof of Theorem 1.

Proposition 1 If G00 is a subgraph of a constraint graph G then sp(G) � sp(G00).

Proof Suppose sp(G) < sp(G00). Given a minimal span assignment of G, the channels assigned

to the vertices of G00 form an assignment of G00 of span smaller than sp(G00), which would give

a contradiction. 2

It follows that if B is a lower bound for sp(G00), then B is also a lower bound for sp(G). The

use of subgraphs is strictly necessary. For example, if Theorem 2 is applied to a full constraint

2The frequency plan can also be seen on the World Wide Web. See Example 3 at:

http://www.cs.cf.ac.uk/User/Steve.Hurley/plans.htm
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graph, the number of edges of weight zero is often su�ciently large to allow H(G0) to equal

zero. A good approach is to �nd a maximum level-p clique for several values of p, and then

choose whichever value of p leads to the best lower bound. A better lower bound is sometimes

obtained from a level-p clique with a number of additional vertices. A maximum level-p clique

is simply a maximum clique in the subgraph of G obtained by removing all edges with label

less than p. The remainder of this section considers how to �nd maximum cliques in a graph,

how the procedure might be simpli�ed for cellular problems and how vertices might be added

to improve the bound.

13.1 Finding Maximum Cliques

A maximum clique in a graph is a complete subgraph (not contained in any larger complete

subgraph), with the largest possible number of vertices. The problem of determining maximum

cliques in a graph is NP-complete. This suggests that, as with the channel assignment problem

itself, large problems cannot be solved exactly. However, for the graphs that arise in practice

in channel assignment, it appears that the problems can be solved in reasonable time if the

number of vertices is less than about 800. For larger graphs it would be necessary to resort to a

heuristic procedure, such as that described by Gendreau et al. (1993). This would give a large

clique which would not be guaranteed to be maximum, so the lower bound obtained might be

weaker than that given by the actual maximum clique.

In order to �nd maximum cliques exactly for graphs with fewer than about 800 vertices,

the partial enumeration algorithm presented by Carraghan and Pardalos (1990) gives good

results. However, if it is to �nish in reasonable time for the larger problems, a good ordering

of the vertices should be used. The orderings introduced by Hale (1981) for sequential channel

asssignment are e�ective in this application. Their e�ectiveness is discussed in more detail by

Thiel et al. (1997).

13.2 Maximum Cliques in Cellular Problems

Determination of maximum cliques is much less computationally demanding when, as in the

example in Section 12, there is a smaller number of transmitter locations and a demand vector

which describes the number of transmitters at each site. As the co-site constraint is larger than

all other constraints, it is easily seen that if a maximum clique includes one transmitter from

a site, it will include all transmitters from the site. This fact can be used (Allen, unpublished)

to dramatically reduce the computational requirement of the maximum clique algorithm.

13.3 Adding Vertices to Improve Lower Bounds

The di�culty of generating lower bounds for practical problems seems to vary considerably.

For some practical problems the clique bound of Theorem 1 is attainable for an assignment

and so is best possible. For other practical problems, the best lower bound is obtained from

some level-p clique, but a travelling salesman or more sophisticated bound is necessary. When

attempting to �nd the best possible lower bound, the hardest practical problems are those that

require a subgraph larger than a clique. Such problems are not uncommon. It is possible to

envisage at least three methods of adding vertices to a clique:
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1. Take the chosen level-p clique as starting subgraph and repeatedly add vertices to the

current subgraph as follows. For each vertex not in the subgraph, calculate the sum of

the labels of the edges joining the vertex to the current subgraph. Add the vertex for

which this sum is largest and re-evaluate the lower bound. If the lower bound does not

decrease, continue.

2. Take the chosen level-p clique as starting subgraph and repeatedly add vertices to the

current subgraph as follows. If the current subgraph can be assigned with a span equal to

(or close to) the current bound, �x the assignment and attempt to extend the assignment

to the full constraint graph. If any vertices are always involved in constraint violations

with the subgraph, they should be added to the subgraph and the bound re-evaluated. If

the lower bound does not decrease, continue.

3. Take the chosen level-p clique as starting subgraph and repeatedly add vertices to the

current subgraph as follows. Assign the current subgraph, �x the assignment and calculate

the available channels for each vertex not in the subgraph. Add the vertex or vertices

with the smallest available number of channels. If the lower bound does not decrease,

continue. This is the technique used in FASoft (Hurley et al. 1997).

Although all three methods have their merits and have proved successful on certain problems,

each has its problems and none is guaranteed to work. They are also not easy to apply in

practice. The development of these methods is a topic which merits further investigation.

14 Mathematical Programming

There are two reasons for using Mathematical Programming in lower bounding techniques for

channel assignment. Firstly, it may be possible to more easily calculate bounds equivalent to or

close to those described in previous sections. For example, the software described by Volgenant

(1990) is restricted to a maximum of 250 vertices and does not always converge in a reasonable

time. Sometimes the same result can be found using a simple linear program. Secondly, it is

possible to �nd stronger bounds than the travelling salesman bound using these methods.

The approach of Janssen and Kilakos (1996) using Integer Programming has already been

mentioned. Mathematical Programming techniques have also been used in the CALMA pro-

ject3. The emphasis was on minimising the number of distinct frequencies used, rather than

span minimization.

The travelling salesman problem can be formulated as an integer program. Let the graph G0
0

be formed from G0 by the addition of a dummy vertex v0 joined by an edge of weight 0 to each

vertex of G0. This dummy vertex converts the open symmetric travelling salesman problem to

a closed symmetric travelling salesman problem, where it is required to minimize the length of

a circuit instead of the length of a path. If a minimal weight circuit is found in G0
0 then the

vertex of weight 0 can be removed to give a minimum weight path in G0. Then H(G0) is equal

to the solution of the following well known integer program for the closed symmetric travelling

3Information on the CALMA project can be found on the World Wide Web at

http://www.win.tue.nl/math/bs/comb opt/hurkens/calma.html
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salesman problem (TSP):

Minimize
X

vivj2E(G0

0
)

cijxij (1)

subject to
X

j:vivj2E(G0

0
)

xij = 2; vi 2 V (G0
0) (2)

X

vi2S;vj2V (G0

0
)nS

xij � 2; S � V (G0
0) (3)

xij 2 f0; 1g; vivj 2 E(G0
0): (4)

The formulation gives a minimum weight Hamiltonian circuit in G0
0 from which a minimal

weight Hamiltonian path of weight H(G0) can be obtained by removing the vertex v0. The

integer variable xij is equal to 1 if edge vivj is in the Hamiltonian circuit and equal to 0

otherwise. The total weight of the circuit to be minimised is given as 1. The equations 2

represent the requirement that there are two edges of the Hamiltonian circuit at each vertex.

The inequalities 3 represent the so called subtour elimination constraints. These ensure that a

single circuit is obtained, rather than the union of a number of disjoint circuits.

If this integer program is solved exactly the value of H(G0) is obtained. However, this may

not be practical. One particular di�culty here is the memory required to store the subtour

elimination inequalities, as there can be a very large number of them. One approach to making

a solution practical is to relax the problem by weakening or removing one or more of the

conditions. If the conditions are weakened it may be possible to �nd a solution of smaller total

weight. Thus H(G0) may no longer be obtained, but instead a lower bound for H(G0) is found.

This lower bound may be still be adequate for the purpose of deriving a strong lower bound for

sp(G).

If the integrality constraint 4 is relaxed to

0 � xij � 1 vivj 2 E(G0
0) (5)

the linear (LP) relaxation of the integer program is obtained. This relaxation can be easy to

solve and is generally a good lower bound. For random graphs the bound is, on average, within

1% of the exact value of H(G0). However, the memory requirement problem for the subtour

elimination constraints remains.

An alternative is to relax the integer program by removing the subtour elimination con-

straints 3. This gives an integer program for the minimum weight perfect two-matching prob-

lem (PTMP) in G0
0. A perfect-two matching is a union of one or more circuits containing

every vertex once and once only. An algorithm exists for �nding a minimum weight perfect

two-matching which is guaranteed to terminate in a time which is O(jV (G)j2jE(G)j) (Pekny
and Miller 1994). A lower bound can also be obtained by replacing the integrality constraint 4

by the constraint 5 and using a standard Linear Programming package. For many subgraphs

of constraint graphs consisting of a clique or a clique with some additional vertices, this lower

bound is close to H(G0).

This LP relaxation of the minimum weight perfect two-matching problem, applied to a

suitable subgraph, appears to be a simple, fast and robust method of obtaining good lower

bounds for sp(G) in circumstances where the travelling salesman bound is strong. It is, of
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course, never stronger than the travelling salesman bound. As an illustration of the e�ectiveness

of the approach, consider the Philadelphia problem presented in Section 12. If we apply the

LP relaxation of the minimum weight perfect two-matching problem to the same subgraph,

generated by cells 2,3,8,9,10,16,17, then the tight lower bound of 426 is obtained. This approach

has the advantage of being applicable to a wider range of problems than the rather specialised

derivation presented in Section 12.

The linear programming approach described above is capable of improvement in two circum-

stances. The �rst circumstance is when the travelling salesman bound is inherently weak. This

can arise due to the fact that the bound takes no account of constraints between non-consecutive

vertices in the Hamiltonian path. The example of Section 12 shows that the travelling sales-

man bound is sometimes tight. It is certainly tight, for example, for a level-i clique where

max
fi;jg

cij � 2(i + 1), as there exist no constraint violations between non-consecutive vertices of

the Hamiltonian path. In this case the Hamiltonian path generates an assignment and the

bound is best possible. However, there certainly exist many problems where the travelling

salesman bound is not tight and a stronger bound is necessary. The second circumstance is

where there is some uncertainty about the best subgraph to use for the bound. The travelling

salesman bound (and most other bounds) have the property that their value reduces rapidly

when more than a small number of critical vertices are added to the appropriate clique. This

behaviour can be mitigated if the bound is improved. The bound will be improved here by

adding additional constraints, referred to as frequency assignment constraints.

Associate a non-negative integer variable eij with each edge vivj of the constraint graph

G. The eij are chosen so that when an assignment is constructed from a Hamiltonian path

fvi1 ; : : : ; ving by setting

f(vi1) = 0

f(vij ) = f(vij�1) + cij�1ij + eij�1ij for j = 2; : : : ; n;

the assignment will have no constraint violations. Then constraints between consecutive vertices

on the Hamiltonian path no longer have to be met exactly, allowing constraints between non-

consecutive vertices to be satis�ed. In this case the value eij is referred to as the excess on the

edge vivj .

To formulate the frequency assignment constraints, make the following de�nitions. If P

is a path vi1 ; vi2 ; : : : ; vik with edge set E(P ), then let XP = xi1i2 + � � � + xik�1ik and EP =

ei1i2 + � � �+ eik�1ik . De�ne the de�cit of P as

d(P ) = ci1ik � (ci1i2 + � � � + cik�1ik):

Let P(G0) be the set of paths P of G0 with d(P ) > 0. Then, if P 2 P(G0) it is required that

XP � (jE(P )j � 1) � EP

d(P )
:

If XP � (jE(P )j � 1) then EP is unconstrained. If XP = jE(P )j (that is, if all edges of P are

included in the Hamiltonian path), then the total excess on P must be at least as large as the

de�cit of P to ensure that the constraint between the end vertices of P is satis�ed. This gives
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the following integer programming formulation of the FAP:

Minimize
X

vivj2E(G0

0
)

cijxij +
X

vivj2E(G0)

eij (6)

subject to
X

j:vivj2E(G0

0
)

xij = 2; vi 2 V (G0
0) (7)

X

vi2S;vj2V (G0

0
)nS

xij � 2; S � V (G0
0) (8)

d(P )XP � d(P )(jE(P )j � 1)�EP � 0; P 2 P(G0) (9)

xij 2 f0; 1g; vivj 2 E(G0
0) (10)

eij 2 f0; 1; : : : ; cmaxg; vivj 2 E(G0) (11)

where cmax = max
fi;jg

cij. Note that when minimizing 6, eij will equal zero if xij = 0.

As with the formulation of the travelling salesman problem, a dummy vertex is used to

express the problem in terms of a circuit rather than a path. The objective function in 6 is the

total actual length of the path to be minimised. Equations 7 ensure that there are two edges of

the circuit at each vertex. Inequalities 8 are the subtour elimination constraints. Inequalities 9

ensure that there are no constraint violations between non-consecutive vertices in the path.

The fact that the variables xij are integers is expressed by 10 and the fact that the excesses are

integers and at most equal to the maximum constraint value is expressed by 11

This integer program, if it can be solved, gives an exact solution of the channel assignment

problem for the full constraint graph G. Although this is rarely possible, lower bounds can be

derived as follows:

The integrality constraints 10, 11 are replaced by

0 � xij � 1; vivj 2 E(G0
0) (12)

0 � eij � cmax; vivj 2 E(G0) (13)

and a linear programming relaxation of the channel assignment problem is obtained. By also

omitting the subtour elimination constraints 8, a linear programming relaxation of the formula-

tion of the perfect two matching problem (PTMP), with extra frequency assignment constraints

(PTMP+FAP) is obtained. This gives solutions in an acceptable time and appears to give an

excellent bound when applied to a suitable subgraph, if it is practicable. Sometimes there are

too many constraints in equation 9 and a subset of them must be chosen. This can be done by,

for example, restricting the length of the paths P 2 P(G0) to 3 or 2.

The choice of which FAP constraints 9 to keep and which to eliminate may be critical in

obtaining a strong bound. However, it appears that elimination of the subtour elimination

constraints and relaxation of the integrality constraints makes little or no di�erence to the

strength of the lower bound, for real frequency assignment problems. A level-0 clique is often a

good candidate subgraph for this method, rather than a higher level clique. This is because the

constraints in equation 9 tend to prevent constraint violations between non-consecutive vertices

in the Hamiltonian path, which often occur if a travelling salesman bound is used with this

level of clique.
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Some results comparing this lower bound with previous methods and illustrating the im-

provement are given by Allen et al. (1997). These results are given for non-cellular problems.

In the next section a simpli�cation of this bound for cellular problems will be shown to be

capable of generating a tight bound by solving a simple linear program.

15 An Example Using Mathematical Programming

The Mathematical Programming approach (PTMP+FAP) in the previous section has the po-

tential to �nd the strongest possible bounds. However, the number of FAP constraints can,

for some problems, be too large for a Linear Programming package to handle. In this section

a simpli�cation of the method will be described which, for cellular problems, dramatically re-

duces both the number of variables and the number of constraints. It does this by replacing the

variables by certain sums of variables. The method will be illustated with a recent variation of

the Philadelphia problem.

Tcha et al. (1997) proposed a new lower bound for the span of an assignment, extending

the work of Gamst (1986). They show their bound to be tighter than the bound presented by

Gamst and claim wider and easier real-world applicability. The variation of the Philadelphia

problem presented is identical to that in Section 12 except that cells with centres at distancep
3 require two channels separation. Tcha et al. show that their method gives a bound of

460 channels (i.e. sp(G) � 459). This same bound of 459 can be obtained using the Linear

Programming relaxation of the perfect two matching formulation, applied to the level-0 clique

f1,2,3,7,8,9,10,15,16,17,19,20g with 360 vertices. Notice that the level-0 clique bound of The-

orem 1 is only 359. The clique is too large to apply the software described by Volgenant (1990)

to calculate the travelling salesman bound. Here it will be shown that a Linear Programming

relaxation of PTMP+FAP gives a bound sp(G) � 524, a result which is best possible.

Consider a cellular problem with transmitters located at a number of sites and with the

number of transmitters at each site described by a demand vector m. Let Cr denote site r, let
Srs be de�ned by:

Srs =
X

i;j

xij (vi 2 Cr; vj 2 Cs)

and let Ers be de�ned by:

Ers =
X

i;j

eij (vi 2 Cr; vj 2 Cs):

Thus Srs denotes the sum of the number of edges joining vertices at sites Cr and Cs, and Ers is
the sum of the excesses on these edges.

Let c = cij ; (i; j 2 Cr) be a constant cosite value and suppose c > 2cij for all (i 2 Cr; j 2
Cs; r 6= s). Then if Srs > minfmr;msg there are at least Srs � minfmr;msg edge disjoint

paths of length 2 with the central vertex at one site and the other two vertices at the other

site. Any such path requires a non-zero excess on one of the edges. By counting these excesses

an inequality of the form:

(c� 2crs)(Srs �minfmr;msg) � Ers (14)

is obtained. This is a simpli�ed form of the FAP constraints for paths of length 2.
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Again use a dummy vertex v0, this time considered to be at a dummy site 0 withm0 = 1, in

order to express the problem in terms of a circuit. As before, v0 is joined by an edge of weight

0 to each vertex of G0. The condition that there are two edges at each vertex is expressed as:

Sr0 + 2Srr +
X

s6=r; s6=0

Srs = 2mr (r 6= 0; mr = jV (Cr)j) (15)

X

s6=0

S0s = 2 (16)

and the objective function to be minimised is

X

r 6=0

(cSrr + Err) +
X

r 6=s; r;s 6=0

(crsSrs + Ers) (17)

where crs = cij (i 2 Cr; j 2 Cs). The variables are all integers.
In the Tcha et al. variation of the Philadelphia problem the level-0 clique shown in Fig. 11

is used.
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Figure 11: The cells forming a maximum level-0 clique

The objective function is
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5S1 1 + 5S2 2 + 5S3 3 + 5S7 7 + 5S8 8 + 5S9 9 +

5S10 10 + 5S15 15 + 5S16 16 + 5S17 17 + 5S19 19 + 5S20 20 +

2S1 2 + S1 3 + 2S1 7 + 2S1 8 + 2S1 9 + S1 10 +

2S1 15 + S1 16 + S1 17 + S1 19 + S1 20 + 2S2 3 +

2S2 7 + 2S2 8 + 2S2 9 + 2S2 10 + S2 15 + 2S2 16 +

S2 17 + S2 19 + S2 20 + S3 7 + 2S3 8 + 2S3 9 +

2S3 10 + S3 15 + S3 16 + 2S3 17 + S3 19 + S3 20 +

2S7 8 + S7 9 + S7 10 + 2S7 15 + 2S7 16 + S7 17 +

S7 19 + S7 20 + 2S8 9 + S8 10 + 2S8 15 + 2S8 16 +

2S8 17 + 2S8 19 + S8 20 + 2S9 10 + 2S9 15 + 2S9 16 +

2S9 17 + S9 19 + 2S9 20 + S10 15 + 2S10 16 + 2S10 17 +

S10 19 + S10 20 + 2S15 16 + S15 17 + 2S15 19 + 2S15 20 +

2S16 17 + 2S16 19 + 2S16 20 + 2S17 19 + 2S17 20 + 2S19 20 +

E1 1 + E2 2 + E3 3 + E7 7 + E8 8 + E9 9 +

E10 10 + E15 15 + E16 16 + E17 17 + S19 19 + E20 20 +

E1 2 + E1 3 + E1 7 + E1 8 + E1 9 + E1 10 +

E1 15 + E1 16 + E1 17 + E1 19 + E1 20 + E2 3 +

E2 7 + E2 8 + E2 9 + E2 10 + E2 15 + E2 16 +

E2 17 + E2 19 + E2 20 + E3 7 + E3 8 + E3 9 +

E3 10 + E3 15 + E3 16 + E3 17 + E3 19 + E3 20 +

E7 8 + E7 9 + E7 10 + E7 15 + E7 16 + E7 17 +

E7 19 + E7 20 + E8 9 + E8 10 + E8 15 + E8 16 +

E8 17 + E8 19 + E8 20 + E9 10 + E9 15 + E9 16 +

E9 17 + E9 19 + E9 20 + E10 15 + E10 16 + E10 17 +

E10 19 + E10 20 + E15 16 + E15 17 + E15 19 + E15 20 +

E16 17 + E16 19 + E16 20 + E17 19 + E17 20 + E19 20:

The conditions for two edges at each vertex, including the condition for two edges at the

dummy vertex, are expressed as:

S0 1 + 2S1 1 + S1 2 + S1 3 + S1 7 + S1 8 + S1 9 + S1 10+

S1 15 + S1 16 + S1 17 + S1 19 + S1 20 = 16

S0 2 + S1 2 + 2S2 2 + S2 3 + S2 7 + S2 8 + S2 9 + S2 10+

S2 15 + S2 16 + S2 17 + S2 19 + S2 20 = 50

S0 3 + S1 3 + S2 3 + 2S3 3 + S3 7 + S3 8 + S3 9 + S3 10+

S3 15 + S3 16 + S3 17 + S3 19 + S3 20 = 16

S0 7 + S1 7 + S2 7 + S3 7 + 2S7 7 + S7 8 + S7 9 + S7 10+

S7 15 + S7 16 + S7 17 + S7 19 + S7 20 = 36

S0 8 + S1 8 + S2 8 + S3 8 + S7 8 + 2S8 8 + S8 9 + S8 10+

S8 15 + S8 16 + S8 17 + S8 19 + S8 20 = 104

S0 9 + S1 9 + S2 9 + S3 9 + S7 9 + S8 9 + 2S9 9 + S9 10+

S9 15 + S9 16 + S9 17 + S9 19 + S9 20 = 154
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S0 10 + S1 10 + S2 10 + S3 10 + S7 10 + S8 10 + S9 10 + 2S10 10+

S10 15 + S10 16 + S10 17 + S10 19 + S10 20 = 56

S0 15 + S1 15 + S2 15 + S3 15 + S7 15 + S8 15 + S9 15 + S10 15+

2S15 15 + S15 16 + S15 17 + S15 19 + S15 20 = 72

S0 16 + S1 16 + S2 16 + S3 16 + S7 16 + S8 16 + S9 16 + S10 16+

S15 16 + 2S16 16 + S16 17 + S16 19 + S16 20 = 114

S0 17 + S1 17 + S2 17 + S3 17 + S7 17 + S8 17 + S9 17 + S10 17+

S15 17 + S16 17 + 2S17 17 + S17 19 + S17 20 = 56

S0 19 + S1 19 + S2 19 + S3 19 + S7 19 + S8 19 + S9 19 + S10 19+

S15 19 + S16 19 + S17 19 + 2S19 19 + S19 20 = 20

S0 20 + S1 20 + S2 20 + S3 20 + S7 20 + S8 20 + S9 20 + S10 20+

S15 20 + S16 20 + S17 20 + S19 20 + 2S20 20 = 26

S0 1 + S0 2 + S0 3 + S0 7 + S0 8 + S0 9 + S0 10+

S0 15 + S0 16 + S0 17 + S0 19 + S0 20 = 2

and a selection of FAP constraints is

S8 9 � E8 9 � 52 � 0

S8 16 � E8 16 � 52 � 0

S9 16 � E9 16 � 57 � 0

3S7 9 � E7 9 � 54 � 0

3S9 19 � E9 19 � 30 � 0

3S8 10 � E8 10 � 84 � 0

3S8 20 � E8 20 � 39 � 0

3S1 16 � E1 16 � 24 � 0

3S3 16 � E3 16 � 24 � 0

3S2 15 � E2 15 � 75 � 0

3S2 17 � E2 17 � 75 � 0

3S15 17 � E15 17 � 84 � 0

If this linear program is run on a standard Mathematical Programing package a lower bound of

524 is obtained. This bound is obtained whether it is run as integer program (with the condition

that all variables be integers added) or as a linear program (without such a condition). In both

cases the result is given in 0.24 seconds (using CPLEX on a 133MHz 64Mb Pentium PC). The

same is true if the full set of FAP constraints is generated. In fact the lower bound of 524 is best

possible, as FASoft (Smith et al., 1998), (Hurley et al. 1997) is able to �nd an assignment of

span 524.

The equations and inequalities appear extensive. However, they can be directly generated

from the matrix of elements crs and the vector m in a form suitable for input to a Linear

Programming package.
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The method has proved succesful on other problems. It can, for example, be applied to

the original Philadelphia problem described in Section 12. If it is applied to the level-0 clique

generated by cells f1,2,3,7,8,9,10,15,16,17,19,20g then the lower bound of 426 is again found.

This has the advantage that the subgraph is a standard clique which can be found directly

using a maximum clique algorithm.

For cellular problems the method appears to be the best of those described in this report.

The requirement for the method to give a strong bound is that there must exist a suitable

subgraph, with a minimum span which determines the minimum span of G.

16 Assigning Cliques Using Integer Programming Bounds

The work of the previous section was directed towards the determination of a lower bound for

the span of an assignment in a cellular problem. In the examples attempted so far, with the

subgraph chosen to be a level-0 clique, an integer solution to the Mathematical Programming

problem has been obtained.

This opens up an interesting possibility. As the solution to the integer programming for-

mulation is obtained quickly, it may provide a fast and e�ective means of assigning the clique.

Essentially, if all paths P with de�cit d(P ) > 0 have been included in the formulation, then the

integer solution leads constructively to a perfect 2-matching in G0
0, with no constraint violations

between non-adjacent vertices in the matching. If the perfect 2-matching is a union of circuits

rather than a single circuit, a simple heuristic is then used to merge circuits wherever possible.

If a single circuit is obtained without creating new constraint violations, removal of the dummy

vertex gives an assignment of minimum span. If a single circuit is not obtained, the circuits

can still be merged, at the cost of an increase in span. However, good assignments may still be

obtained quickly in this case as well.

The restriction of the method to level-0 (or higher level) cliques in cellular problems does of

course limit its applicability. However, if the technique proves e�ective in practice, it may well

be useful for problems which are best solved by assigning a subgraph �rst, �xing the assignment

and then extending it to the whole problem. It has already been established (Smith et al. 1998)

that some problems are best solved by this subgraph approach. The method can certainly be

expected to be faster than the simulated annealing or tabu search heuristics used currently

(Hurley et al. 1997). Whether the assignments are at least as good as those obtained by such

heuristics remains to be evaluated.

The requirement that all paths P with de�cit d(P ) > 0 be included in the formula-

tion is quite commonly satis�ed in cellular frequency assignment problems. For example, if

maxi 6=jcij = 2 and c = 3 then the only paths with potential de�cit in a level-0 clique are those

included in the formulation.

The details of the assignment procedure will now be given. Suppose that an integer solution

of the formulation given in section 15 (including all paths P with de�cit d(P ) > 0) is available.

There are four basic steps:

1. Construct the perfect 2-matching

Given an integer solution to the linear program (or a solution to the integer program)

described in section 15, there is an integer Srs and an integer Ers for each pair of sites

Cr and Cs , where (r 6= s). Associated with each pair r,s is a pair of integers mr and
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ms representing the number of transmitters at site Cr and site Cs respectively. There is

also an integer Srr for each site Cr. Consider �rst the construction of the subgraph of

the matching whose edges have one vertex from site Cr and one vertex from site Cs. The
subgraph has Srs edges. Start with a set M of Srs disjoint edges, with one end associated

with the site Cr and one end associated with the site Cs. Denote the vertices associated
with site Cr by u1; u2; u3 : : : and the vertices associated with site Cs by w1; w2; w3 : : :. If

Srs > mr then merge Srs �mr pairs of vertices (v1; v2); (v3; v4); (v5; v6); : : : . Similarly

if Srs > ms then merge Srs �ms pairs of vertices (w2; w3); (w4; w5); (w6; w7); : : : . The

subgraph formed is then either a union of paths or, in the case when r = s and Srs = 2ms

when it is also necessary to merge (wms
; w1), a single circuit. Excess values can then be

added to one edge incident with each vertex of degree 2 in the paths, to prevent constraint

violations. Inequality 15 shows that Ers is su�ciently large to allow this.

Such a subgraph with Srs edges is constructed for each pair r; s. Equation 15 guarantees

that the union of these subgraphs, with the labelling of the vertices corresponding to

each of the sites permuted if necessary, need have no vertices of degree greater than

2. Some vertices may have degree 0 or 1, but for each r exactly Srr edges have to be

added, each joining two vertices corresponding to cell Cr. When adding these edges, the

creation of small circuits should be avoided as far as possible. No excesses are necessary

to prevent constraint violations involving these edges of weight c. When these �nal edges

are added, each vertex has degree 2 and there are no constraint violations, given our

initial assumptions. Thus a perfect 2-matching with no constraint violations is obtained.

2. Use a heuristic to merge circuits without increasing span

Suppose that the perfect 2-matching has more than one circuit, and that two of the

circuits both contain a vertex from the same site Cr. Then it is always possible to carry

out a process of interchanging a pair of edges, each incident with a vertex from site Cr,
in such a way that the two circuits become one circuit. This process of interchange is as

follows. Suppose that we have two edges (xvi) and (yvj)with vi; vj 2 Cr. By assumption

x 6= y. Then we delete these two edges and insert edges (xvj) and (yvi). Note that in

some cases it may be important that either two edges without excess are interchanged,

or two edges with excess. This is continued until there are no pairs of circuits which both

contain a vertex from the same site. No new constraint violations are created.

3. Use a heuristic to merge circuits with a possible increase in span

If the number of circuits has not been reduced to one, then circuits which do not each have

a vertex from the same site can still be merged by deleting one edge from each circuit and

inserting two new edges joining the resulting vertices of degree 1. However, additional

constraint violations may arise. These can be removed by inserting additional excesses,

so the span of the �nal assignment may increase.

4. Construct an assignment from the circuit

When a single Hamiltonian circuit in G0
0 is obtained, it can be turned into a Hamiltonian

path in G0
0 by removing the dummy vertex v0. The assignment is then obtained from the

Hamiltonian path as described in section 14.
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17 Conclusion

The main techniques for deriving lower bounds for minimum span frequency assignment have

been surveyed. The techniques based on Mathematical Programming can now generally give

computable and tight bounds for many of the practical problems that arise. For some problems

the Perfect Two-Matching Bound is already tight. When it is not, the importance of the FAP

constraints relative to the subtour elimination and integrality constraints has been noted. The

remaining problem is to �nd general purpose algorithms to generate the best subgraph when a

clique is not adequate, or when the constraint graph is too big for the maximum clique algorithm

to be applied. In the former case, current methods require substantial manual input and even

then are not always satisfactory.

In combination with the best current meta-heuristic algorithms this allows an exact or

reasonably precise estimate of the necessary span for practical assignments without constraint

violations. The ability to do this depends on the particular structures arising from the geometry

of the transmitter locations. If the same techniques are applied to large randomly generated

constraint graphs, the gap between the best of these lower bounds and the span of the best

assignment known can be very large. It is fortunate that it is the practical problems for which

the techniques are most e�ective.

Part III

Report Summary

This report has presented two signi�cant contributions to the evaluation of the models and

algorithms used in frequency assignment. The Benchmark Generator allows the generation of

test data which is typical of frequency assignment problems. This is particularly useful when

comparing representations of the FAP, but can be used to generate binary constraint data as

well. The work on lower bounds has demonstrated that it is possible to produce extremely tight

bounds for evaluating assignments in minimum span problems. Although these results are very

satisfactory, there is still much work to be done in developing a method for determining the

correct subgraph to which the bounds should be applied.
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